Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 376 - 400 of 1440 results
376.

Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 18 Feb 2022 DOI: 10.1021/acssynbio.1c00387 Link to full text
Abstract: Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
377.

Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation.

blue LOV domains Review
Trends Neurosci, 17 Feb 2022 DOI: 10.1016/j.tins.2022.01.004 Link to full text
Abstract: De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
378.

Optical Sensors and Actuators for Probing Proximity-Dependent Biotinylation in Living Cells.

blue iLID HeLa
Front Cell Neurosci, 16 Feb 2022 DOI: 10.3389/fncel.2022.801644 Link to full text
Abstract: Proximity-dependent biotinylation techniques have been gaining wide applications in the systematic analysis of protein-protein interactions (PPIs) on a proteome-wide scale in living cells. The engineered biotin ligase TurboID is among the most widely adopted given its enhanced biotinylation efficiency, but it faces the background biotinylation complication that might confound proteomic data interpretation. To address this issue, we report herein a set of split TurboID variants that can be reversibly assembled by using light (designated "OptoID"), which enable optogenetic control of biotinylation based proximity labeling in living cells. OptoID could be further coupled with an engineered monomeric streptavidin that permits real-time monitoring of biotinylation with high temporal precision. These optical actuators and sensors will likely find broad applications in precise proximity proteomics and rapid detection of biotinylation in living cells.
379.

A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary.

blue LOVTRAP in vitro Control of cytoskeleton / cell motility / cell shape Extracellular optogenetics
Elife, 16 Feb 2022 DOI: 10.7554/elife.75538 Link to full text
Abstract: Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth and assumed that it simply transports cargoes along microtubule tracks from nurse cells to the oocyte. Here, we report that instead of transporting individual cargoes along stationary microtubules into the oocyte, cortical dynein actively moves microtubules within nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. This robust microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein performs bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of fast cytoplasmic transport.
380.

Spatio-temporal, optogenetic control of gene expression in organoids.

blue CRY2/CIB1 Magnets HEK293T human IPSCs Developmental processes Organelle manipulation
bioRxiv, 9 Feb 2022 DOI: 10.1101/2021.09.26.461850 Link to full text
Abstract: Organoids derived from stem cells become increasingly important to study human development and to model disease. However, methods are needed to control and study spatio-temporal patterns of gene expression in organoids. To this aim, we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes, at single-cell resolution and in programmable spatio-temporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. High-resolution spatial transcriptomic and single-cell analyses showed that this local induction was sufficient to generate stereotypically patterned organoids in three dimensions and revealed new insights into SHH’s contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
381.

New developments in the biology of fibroblast growth factors.

blue Cryptochromes LOV domains Review
WIREs Mech Dis, 9 Feb 2022 DOI: 10.1002/wsbm.1549 Link to full text
Abstract: The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
382.

A variety of photoreceptors and the frontiers of optogenetics.

blue red Cryptochromes LOV domains Phytochromes Review
Biophys physicobiology, 9 Feb 2022 DOI: 10.2142/biophysico.bppb-v19.0004 Link to full text
Abstract: Lives have acquired a variety of photoreceptive proteins which absorb light in the UV to far-red region during the evolution, such as many different types of rhodopsin, blue-light receptors including cryptochrome and phototropin, and red/far-red light photochromic phytochromes. After the long-time studies on the molecular mechanism of their action, they have been applied to various photobiological studies. Recent advancement in the research field is remarkable and brought many fruitful results especially in optogenetics. To introduce some of these results, we organized a symposium named “A variety of photoreceptors and the frontiers of optogenetics” at the 59th annual meeting of the Biological Society of Japan (BSJ) in November 2021. The symposium was co-organized by a research area of the Precursory Research for Embryonic Science and Technology Program (PRESTO) named “Optical Control”, directed by Prof. Shichida (Ritsumeikan University), sponsored by Japan Science and Technology Agency (JST). We invited 4 PRESTO members and 2 other researchers to cover the light absorption region from blue to far-red (Figure 1).
383.

Advances in Ophthalmic Optogenetics: Approaches and Applications.

blue Cryptochromes Review
Biomolecules, 8 Feb 2022 DOI: 10.3390/biom12020269 Link to full text
Abstract: Recent advances in optogenetics hold promise for vision restoration in degenerative eye diseases. Optogenetics refers to techniques that use light to control the cellular activity of targeted cells. Although optogenetics is a relatively new technology, multiple therapeutic options are already being explored in pre-clinical and phase I/II clinical trials with the aim of developing novel, safe, and effective treatments for major blinding eye diseases, such as glaucoma and retinitis pigmentosa. Optogenetic approaches to visual restoration are primarily aimed at replacing lost or dysfunctional photoreceptors by inserting light-sensitive proteins into downstream retinal neurons that have no intrinsic light sensitivity. Such approaches are attractive because they are agnostic to the genetic causes of retinal degeneration, which raises hopes that all forms of retinal dystrophic and degenerative diseases could become treatable. Optogenetic strategies can also have a far-reaching impact on translational research by serving as important tools to study the pathogenesis of retinal degeneration and to identify clinically relevant therapeutic targets. For example, the CRY-CIBN optogenetic system has been recently applied to animal models of glaucoma, suggesting a potential role of OCRL in the regulation of intraocular pressure in trabecular meshwork. As optogenetic strategies are being intensely investigated, it appears crucial to consider the opportunities and challenges such therapies may offer. Here, we review the more recent promising optogenetic molecules, vectors, and applications of optogenetics for the treatment of retinal degeneration and glaucoma. We also summarize the preliminary results of ongoing clinical trials for visual restoration.
384.

Combinatorial Approaches for Efficient Design of Photoswitchable Protein-Protein Interactions as In Vivo Actuators.

blue near-infrared red Fluorescent proteins LOV domains Phytochromes Review
Front Bioeng Biotechnol, 8 Feb 2022 DOI: 10.3389/fbioe.2022.844405 Link to full text
Abstract: Light switchable two-component protein dimerization systems offer versatile manipulation and dissection of cellular events in living systems. Over the past 20 years, the field has been driven by the discovery of photoreceptor-based interaction systems, the engineering of light-actuatable binder proteins, and the development of photoactivatable compounds as dimerization inducers. This perspective is to categorize mechanisms and design approaches of these dimerization systems, compare their advantages and limitations, and bridge them to emerging applications. Our goal is to identify new opportunities in combinatorial protein design that can address current engineering challenges and expand in vivo applications.
385.

Bifunctional optogenetic switch for improving shikimic acid production in E. coli.

blue VVD E. coli Transgene expression
Biotechnol Biofuels, 7 Feb 2022 DOI: 10.1186/s13068-022-02111-3 Link to full text
Abstract: Background Biomass formation and product synthesis decoupling have been proven to be promising to increase the titer of desired value add products. Optogenetics provides a potential strategy to develop light-induced circuits that conditionally control metabolic flux redistribution for enhanced microbial production. However, the limited number of light-sensitive proteins available to date hinders the progress of light-controlled tools. Results To address these issues, two optogenetic systems (TPRS and TPAS) were constructed by reprogramming the widely used repressor TetR and protease TEVp to expand the current optogenetic toolkit. By merging the two systems, a bifunctional optogenetic switch was constructed to enable orthogonally regulated gene transcription and protein accumulation. Application of this bifunctional switch to decouple biomass formation and shikimic acid biosynthesis allowed 35 g/L of shikimic acid production in a minimal medium from glucose, representing the highest titer reported to date by E. coli without the addition of any chemical inducers and expensive aromatic amino acids. This titer was further boosted to 76 g/L when using rich medium fermentation. Conclusion The cost effective and light-controlled switch reported here provides important insights into environmentally friendly tools for metabolic pathway regulation and should be applicable to the production of other value-add chemicals.
386.

Oncogenic protein condensates modulate cell signal perception and drug tolerance.

blue CRY2/CRY2 iLID H3122 STE-1 Signaling cascade control
bioRxiv, 4 Feb 2022 DOI: 10.1101/2022.02.02.478845 Link to full text
Abstract: Drug resistance remains a central challenge towards durable cancer therapy, including for cancers driven by the EML4-ALK oncogene. EML4-ALK and related fusion oncogenes form cytoplasmic protein condensates that transmit oncogenic signals through the Ras/Erk pathway. However, whether such condensates play a role in drug response or resistance development is unclear. Here, we applied optogenetic functional profiling to examine how EML4-ALK condensates impact signal transmission through transmembrane receptor tyrosine kinases (RTKs), a common route of resistance signaling. We found that condensates dramatically suppress signaling through activated RTKs including EGFR. Conversely, ALK inhibition restored and hypersensitized RTK signals. Modulation of RTK sensitivity occurred because EML4-ALK condensates sequestered downstream adapters that are required to transduce signals from both EML4-ALK and ligand-stimulated RTKs. Strikingly, EGFR hypersensitization resulted in rapid and pulsatile Erk signal reactivation within 10s of minutes of drug addition. EGFR reactivation originated from paracrine signals from neighboring apoptotic cells, and reactivation could be blocked by inhibition of either EGFR or matrix metalloproteases. Paracrine signals promoted survival during ALK inhibition, and blockade of paracrine signals accelerated cell killing and suppressed drug tolerance. Our results uncover a regulatory role for protein condensates in cancer signaling and drug response and demonstrate the potential of optogenetic profiling for drug discovery based on functional biomarkers in cancer cells.
387.

Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Int J Mol Sci, 3 Feb 2022 DOI: 10.3390/ijms23031737 Link to full text
Abstract: Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
388.

Mouse Model for Optogenetic Genome Engineering.

blue LOV domains Review
Acta Med Okayama, Feb 2022 DOI: 10.18926/amo/63202 Link to full text
Abstract: Optogenetics, a technology to manipulate biological phenomena thorough light, has attracted much attention in neuroscience. Recently, the Magnet System, a photo-inducible protein dimerization system which can control the intracellular behavior of various biomolecules with high accuracy using light was developed. Furthermore, photoactivation systems for controlling biological phenomena are being developed by combining this technique with genome-editing technology (CRISPR/Cas9 System) or DNA recombination technology (Cre-loxP system). Herein, we review the history of optogenetics and the latest Magnet System technology and introduce our recently developed photoactivatable Cre knock-in mice with temporal-, spatial-, and cell-specific accuracy.
389.

Selective Photoinduced Dimerization and Slow Recovery of a BLUF Domain of EB1.

blue BLUF domains Background
J Phys Chem B, 28 Jan 2022 DOI: 10.1021/acs.jpcb.1c10100 Link to full text
Abstract: The EAL-BLUF fragment from Magnetococcus marinus BldP1 (EB1) light-dependently hydrolyzes c-di-GMP. Herein, the photoreaction of the BLUF domain of EB1 (eBLUF) is studied. It is found for the first time that a monomeric BLUF domain forms a dimer upon illumination and its dark recovery is very slow. The dimer of light- and dark-state protomers (LD-dimer) is much more stable than that of two light-state protomers (LL-dimer), and the dark recovery of the LD-dimer is approximately 20 times slower than that of the LL-dimer, which is suitable for optogenetic tools. The secondary structure of the L-monomer is different from those of the D-monomer and the LD-dimer. The transient grating measurements reveal that this conformational change occurs simultaneously with dimerization. Although the W91A mutant exhibits a spectral red shift, it forms a heterodimer with the L-monomer of wild-type eBLUF with similar stability to the LD-dimer. This suggests that the conformation of the dimerization site of W91A is similar to that of the dark state (dark-mimic mutant); that is, the light-induced structural changes in the chromophore cavity are not transferred to the other part of the protein. The selective photoinduced dimerization of eBLUF is potentially useful to control interprotein interactions between two different effector domains bound to these proteins.
390.

MYC amplifies gene expression through global changes in transcription factor dynamics.

blue AsLOV2 HBEC3-KT MCF7 NIH/3T3 U-2 OS Endogenous gene expression
Cell Rep, 25 Jan 2022 DOI: 10.1016/j.celrep.2021.110292 Link to full text
Abstract: The MYC oncogene has been studied for decades, yet there is still intense debate over how this transcription factor controls gene expression. Here, we seek to answer these questions with an in vivo readout of discrete events of gene expression in single cells. We engineered an optogenetic variant of MYC (Pi-MYC) and combined this tool with single-molecule RNA and protein imaging techniques to investigate the role of MYC in modulating transcriptional bursting and transcription factor binding dynamics in human cells. We find that the immediate consequence of MYC overexpression is an increase in the duration rather than in the frequency of bursts, a functional role that is different from the majority of human transcription factors. We further propose that the mechanism by which MYC exerts global effects on the active period of genes is by altering the binding dynamics of transcription factors involved in RNA polymerase II complex assembly and productive elongation.
391.

Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules.

blue LOVTRAP NCI-H1299 Control of cytoskeleton / cell motility / cell shape
Curr Biol, 24 Jan 2022 DOI: 10.1016/j.cub.2022.01.017 Link to full text
Abstract: Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.
392.

Compartmentalization of telomeres through DNA-scaffolded phase separation.

blue iLID HeLa hTERT RPE-1 U-2 OS Epigenetic modification
Dev Cell, 24 Jan 2022 DOI: 10.1016/j.devcel.2021.12.017 Link to full text
Abstract: Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.
393.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
394.

Mechanical strain stimulates COPII-dependent trafficking via Rac1.

blue CRY2/CIB1 HeLa Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
bioRxiv, 23 Jan 2022 DOI: 10.1101/2022.01.23.477215 Link to full text
Abstract: Secretory trafficking from the endoplasmic reticulum (ER) is subject to regulation by extrinsic and intrinsic factors. While much of the focus has been on biochemical triggers, little is known whether and how the ER is subject to regulation by mechanical signals. Here, we show that COPII-dependent ER-export is regulated by mechanical strain. Mechanotransduction to the ER was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulate ER-to-Golgi transport. Altogether, we establish an unprecedented link between mechanical strain and export from the ER.
395.

Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production.

blue green CcaS/CcaR EL222 RsLOV YtvA E. coli Transgene expression
Molecules, 18 Jan 2022 DOI: 10.3390/molecules27030617 Link to full text
Abstract: Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10-CcaS#10-CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10-CcaS#10-CcaR system was combined with a blue light-activated YF1-FixJ-PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
396.

Wnt Signaling Rescues Amyloid Beta-Induced Gut Stem Cell Loss.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control
Cells, 14 Jan 2022 DOI: 10.3390/cells11020281 Link to full text
Abstract: Patients with Alzheimer's disease suffer from a decrease in brain mass and a prevalence of amyloid-β plaques. These plaques are thought to play a role in disease progression, but their exact role is not entirely established. We developed an optogenetic model to induce amyloid-β intracellular oligomerization to model distinct disease etiologies. Here, we examine the effect of Wnt signaling on amyloid in an optogenetic, Drosophila gut stem cell model. We observe that Wnt activation rescues the detrimental effects of amyloid expression and oligomerization. We analyze the gene expression changes downstream of Wnt that contribute to this rescue and find changes in aging related genes, protein misfolding, metabolism, and inflammation. We propose that Wnt expression reduces inflammation through repression of Toll activating factors. We confirm that chronic Toll activation reduces lifespan, but a decrease in the upstream activator Persephone extends it. We propose that the protective effect observed for lithium treatment functions, at least in part, through Wnt activation and the inhibition of inflammation.
397.

Towards translational optogenetics.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Nat Biomed Eng, 13 Jan 2022 DOI: 10.1038/s41551-021-00829-3 Link to full text
Abstract: Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
398.

Photophysics of the Blue Light Using Flavin Domain.

blue BLUF domains Background
Acc Chem Res, 12 Jan 2022 DOI: 10.1021/acs.accounts.1c00659 Link to full text
Abstract: ConspectusLight activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.
399.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
400.

Design and Characterization of an Optogenetic System in Pichia pastoris.

blue EL222 P. pastoris Transgene expression
ACS Synth Biol, 7 Jan 2022 DOI: 10.1021/acssynbio.1c00422 Link to full text
Abstract: Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
Submit a new publication to our database